安装地址
Flume官网地址
文档查看地址
下载地址
http://archive.cloudera.com/cdh5/cdh/5/flume-ng-1.6.0-cdh5.16.2-src.tar.gz
安装部署
将apache-flume-1.7.0-bin.tar.gz上传到linux的/opt/software目录下
解压apache-flume-1.7.0-bin.tar.gz到/opt/module/目录下
[aliyun@aliyun software]$ tar -zxf apache-flume-1.7.0-bin.tar.gz -C /opt/module/
修改apache-flume-1.7.0-bin的名称为flume
[aliyun@aliyun module]$ mv apache-flume-1.7.0-bin flume
将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件
[aliyun@aliyun conf]$ mv flume-env.sh.template flume-env.sh
[aliyun@aliyun conf]$ vi flume-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
测试
安装netcat工具
[aliyun@aliyun software]$ sudo yum install -y nc
判断44444端口是否被占用
[aliyun@aliyun flume-telnet]$ sudo netstat -tunlp | grep 44444
创建Flume Agent配置文件flume-netcat-logger.conf
在flume目录下创建job文件夹并进入job文件夹。
[aliyun@aliyun flume]$ mkdir job
[aliyun@aliyun flume]$ cd job/在job文件夹下创建Flume Agent配置文件flume-netcat-logger.conf。
[aliyun@aliyun job]$ vim flume-netcat-logger.conf
添加内容如下:
# Name the components on this agent #a1表示agent的名称
a1.sources = r1 #r1表示a1的输入源
a1.sinks = k1 #k1表示a1的输出目的地
a1.channels = c1 #c1表示a1的缓冲区
# Describe/configure the source
a1.sources.r1.type = netcat #表示a1的输入源类型为netcat端口类型
a1.sources.r1.bind = localhost #表示a1的监听的主机
a1.sources.r1.port = 44444 #表示a1的监听的端口号
# Describe the sink
a1.sinks.k1.type = logger #表示a1的输出目的地是控制台logger类型
# Use a channel which buffers events in memory
a1.channels.c1.type = memory #表示a1的channel类型是memory内存型
a1.channels.c1.capacity = 1000 #表示a1的channel总容量1000个event
a1.channels.c1.transactionCapacity = 10 #表示a1的channel传输时收集到了100条event以后再去提交事务
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 #将r1和c1连接起来
a1.sinks.k1.channel = c1 #将k1和c1连接起来先开启flume监听端口
第一种写法:
[aliyun@aliyun flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console
第二种写法:
[aliyun@aliyun flume]$ bin/flume-ng agent -c conf/ -n a1 –f job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console
参数说明:
--conf conf/:
表示配置文件存储在conf/目录
--name a1:
表示给agent起名为a1`--conf-file job/flume-netcat.conf :`flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。
--Dflume.root.logger==INFO,console :
-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。使用netcat工具向本机的44444端口发送内容
[aliyun@aliyun ~]$ nc localhost 44444
hello
aliyun在Flume监听页面观察接收数据情况
实时读取本地文件到HDFS案例
案例需求:实时监控Hive日志,并上传到HDFS中
给Flume的lib目录下添加aliyun相关的jar包
commons-configuration-1.6.jar
aliyun-auth-2.7.2.jar
aliyun-common-2.7.2.jar
aliyun-hdfs-2.7.2.jar
commons-io-2.4.jar
htrace-core-3.1.0-incubating.jar创建flume-file-hdfs.conf文件
创建文件
[aliyun@aliyun job]$ touch flume-file-hdfs.conf
注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。
[aliyun@aliyun job]$ vim flume-file-hdfs.conf
添加如下内容
# Name the components on this agent
a2.sources = r2 #定义source
a2.sinks = k2 #定义sink
a2.channels = c2 #定义channels
# Describe/configure the source
a2.sources.r2.type = exec #定义source类型为exec可执行命令的
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
a2.sources.r2.shell = /bin/bash -c #执行shell脚本的绝对路径
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://aliyun:9000/flume/%Y%m%d/%H
a2.sinks.k2.hdfs.filePrefix = logs- #上传文件的前缀
a2.sinks.k2.hdfs.round = true #是否按照时间滚动文件夹
a2.sinks.k2.hdfs.roundValue = 1 #多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundUnit = hour #重新定义时间单位
a2.sinks.k2.hdfs.useLocalTimeStamp = true #是否使用本地时间戳
a2.sinks.k2.hdfs.batchSize = 1000 #积攒多少个Event才flush到HDFS一次
a2.sinks.k2.hdfs.fileType = DataStream #设置文件类型,可支持压缩
a2.sinks.k2.hdfs.rollInterval = 60 #多久生成一个新的文件
a2.sinks.k2.hdfs.rollSize = 134217700 #设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollCount = 0 #文件的滚动与Event数量无关
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2注意:
对于所有与时间相关的转义序列,Event Header中必须存在以 “timestamp”的key(除非hdfs.useLocalTimeStamp设置为true,此方法会使用TimestampInterceptor自动添加timestamp)。
执行监控配置
[aliyun@aliyun flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf
开启aliyun和Hive并操作Hive产生日志
[aliyun@aliyun aliyun-2.7.2]$ sbin/start-dfs.sh
[aliyun@aliyun103 aliyun-2.7.2]$ sbin/start-yarn.sh
[aliyun@aliyun hive]$ bin/hive
hive (default)>在HDFS上查看文件。
实时读取目录文件到HDFS案例
案例需求:使用Flume监听整个目录的文件
创建配置文件flume-dir-hdfs.conf
[aliyun@aliyun job]$ touch flume-dir-hdfs.conf
打开文件
[aliyun@aliyun job]$ vim flume-dir-hdfs.conf
添加如下内容
a3.sources = r3 #定义sources
a3.sinks = k3 #定义sink
a3.channels = c3 #定义channel
# Describe/configure the source
a3.sources.r3.type = spooldir #定义souce类型为目录
a3.sources.r3.spoolDir = /opt/module/flume/upload #定义监控目录
a3.sources.r3.fileSuffix = .COMPLETED #定义文件上传完的后缀
a3.sources.r3.fileHeader = true #是否有文件头
a3.sources.r3.ignorePattern = ([^ ]*\.tmp) #忽略所有以.tmp结尾的文件,不上传
# Describe the sink
a3.sinks.k3.type = hdfs #sink类型为hdfs
a3.sinks.k3.hdfs.pat=hdfs://aliyun:9000/flume/upload/%Y%m%d/%H #文件上传到hdfs的路径
a3.sinks.k3.hdfs.filePrefix = upload- #上传文件到hdfs的前缀
a3.sinks.k3.hdfs.round = true #是否按照时间滚动文件夹
a3.sinks.k3.hdfs.roundValue = 1 #多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundUnit = hour #重新定义时间单位
a3.sinks.k3.hdfs.useLocalTimeStamp = true #是否使用本地时间戳
a3.sinks.k3.hdfs.batchSize = 100 #积攒多少个Event才flush到HDFS一次
a3.sinks.k3.hdfs.fileType = DataStream #设置文件类型,可支持压缩
a3.sinks.k3.hdfs.rollInterval = 60 #多久生成一个新的文件
a3.sinks.k3.hdfs.rollSize = 134217700 #设置每个文件的滚动大小大概是128M
a3.sinks.k3.hdfs.rollCount = 0 #文件的滚动与Event数量无关
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3启动监控文件夹命令
[aliyun@aliyun flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf
说明: 在使用Spooling Directory Source时
- 不要在监控目录中创建并持续修改文件
- 上传完成的文件会以.COMPLETED结尾
- 被监控文件夹每500毫秒扫描一次文件变动
向upload文件夹中添加文件
在/opt/module/flume目录下创建upload文件夹
[aliyun@aliyun flume]$ mkdir upload
向upload文件夹中添加文件
[aliyun@aliyun upload]$ touch aliyun.txt
[aliyun@aliyun upload]$ touch aliyun.tmp
[aliyun@aliyun upload]$ touch aliyun.log查看HDFS上的数据
等待1s,再次查询upload文件夹
[aliyun@aliyun upload]$ ll
总用量 0
-rw-rw-r--. 1 aliyun aliyun 0 5月 20 22:31 aliyun.log.COMPLETED
-rw-rw-r--. 1 aliyun aliyun 0 5月 20 22:31 aliyun.tmp
-rw-rw-r--. 1 aliyun aliyun 0 5月 20 22:31 aliyun.txt.COMPLETED
单数据源多出口案例(选择器)
案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。
准备工作
在/opt/module/flume/job目录下创建group1文件夹
[hadoop@aliyun102 job]$ cd group1/
在/opt/module/datas/目录下创建flume3文件夹
[hadoop@aliyun102 datas]$ mkdir flume3
创建flume-file-flume.conf
配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。
创建配置文件并打开
[hadoop@aliyun102 group1]$ touch flume-file-flume.conf
[hadoop@aliyun102 group1]$ vim flume-file-flume.conf
添加如下内容
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有channel
a1.sources.r1.selector.type = replicating
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
# sink端的avro是一个数据发送者
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = aliyun102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = aliyun102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2注:Avro是由aliyun创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。
注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。
创建flume-flume-hdfs.conf
配置上级Flume输出的Source,输出是到HDFS的Sink。
创建配置文件并打开
[hadoop@aliyun102 group1]$ touch flume-flume-hdfs.conf
[hadoop@aliyun102 group1]$ vim flume-flume-hdfs.conf
添加如下内容
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
# source端的avro是一个数据接收服务
a2.sources.r1.type = avro
a2.sources.r1.bind = aliyun102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://aliyun102:9000/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 600
#设置每个文件的滚动大小大概是128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与Event数量无关
a2.sinks.k1.hdfs.rollCount = 0
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1创建flume-flume-dir.conf
配置上级Flume输出的Source,输出是到本地目录的Sink。
创建配置文件并打开
[hadoop@aliyun102 group1]$ touch flume-flume-dir.conf
[hadoop@aliyun102 group1]$ vim flume-flume-dir.conf
添加如下内容
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = aliyun102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/data/flume3
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。
执行配置文件
分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf
启动aliyun和Hive
[hadoop@aliyun102 aliyun-2.7.2]$ sbin/start-dfs.sh
[hadoop@aliyun103 aliyun-2.7.2]$ sbin/start-yarn.sh
[hadoop@aliyun102 hive]$ bin/hive
hive (default)>
检查HDFS上数据
检查/opt/module/datas/flume3目录中数据
[hadoop@aliyun102 flume3]$ ll
总用量 8
-rw-rw-r--. 1 hadoop hadoop 5942 5月 22 00:09 1526918887550-3
单数据源多出口案例(Sink组)
案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3也负责存储到HDFS
准备工作
在/opt/module/flume/job目录下创建group2文件夹
[hadoop@aliyun102 job]$ cd group2/
创建flume-netcat-flume.conf
配置1个接收日志文件的source和1个channel、两个sink,分别输送给flume-flume-console1和flume-flume-console2。
创建配置文件并打开
[hadoop@aliyun102 group2]$ touch flume-netcat-flume.conf
[hadoop@aliyun102 group2]$ vim flume-netcat-flume.conf
添加如下内容
# Name the components on this agent
a1.sources = r1
a1.channels = c1
a1.sinkgroups = g1
a1.sinks = k1 k2
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = aliyun102
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = aliyun102
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1注:Avro是由aliyun创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。
注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。
创建flume-flume-console1.conf
配置上级Flume输出的Source,输出是到本地控制台。
创建配置文件并打开
[hadoop@aliyun102 group2]$ touch flume-flume-console1.conf
[hadoop@aliyun102 group2]$ vim flume-flume-console1.conf
添加如下内容
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = aliyun102
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = logger
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1创建flume-flume-console2.conf
配置上级Flume输出的Source,输出是到本地控制台。
创建配置文件并打开
[hadoop@aliyun102 group2]$ touch flume-flume-console2.conf
[hadoop@aliyun102 group2]$ vim flume-flume-console2.conf
添加如下内容
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = aliyun102
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2执行配置文件
分别开启对应配置文件:flume-flume-console2,flume-flume-console1,flume-netcat-flume。
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume-flume-console2.conf -Dflume.root.logger=INFO,console
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume-flume-console1.conf -Dflume.root.logger=INFO,console
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume-netcat-flume.conf
使用netcat工具向本机的44444端口发送内容
$ nc localhost 44444
查看Flume2及Flume3的控制台打印
多数据源汇总案例
案例需求:
aliyun103上的Flume-1监控文件/opt/module/group.log,
aliyun102上的Flume-2监控某一个端口的数据流,
Flume-1与Flume-2将数据发送给aliyun104上的Flume-3,Flume-3将最终数据打印到控制台。
准备工作
分发Flume
[hadoop@aliyun102 module]$ xsync flume
在aliyun102、aliyun103以及aliyun104的/opt/module/flume/job目录下创建一个group3文件夹。
[hadoop@aliyun102 job]$ mkdir group3
[hadoop@aliyun103 job]$ mkdir group3
[hadoop@aliyun104 job]$ mkdir group3
创建flume1-logger-flume.conf
配置Source用于监控hive.log文件,配置Sink输出数据到下一级Flume。
在aliyun103上创建配置文件并打开
[hadoop@aliyun103 group3]$ touch flume1-logger-flume.conf
[hadoop@aliyun103 group3]$ vim flume1-logger-flume.conf
添加如下内容
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/group.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = aliyun104
a1.sinks.k1.port = 4141
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1创建flume2-netcat-flume.conf
配置Source监控端口44444数据流,配置Sink数据到下一级Flume:
在aliyun102上创建配置文件并打开
[hadoop@aliyun102 group3]$ touch flume2-netcat-flume.conf
[hadoop@aliyun102 group3]$ vim flume2-netcat-flume.conf
添加如下内容
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = aliyun102
a2.sources.r1.port = 44444
# Describe the sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = aliyun104
a2.sinks.k1.port = 4141
# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1创建flume3-flume-logger.conf
配置source用于接收flume1与flume2发送过来的数据流,最终合并后sink到控制台。
在aliyun104上创建配置文件并打开
[hadoop@aliyun104 group3]$ touch flume3-flume-logger.conf
[hadoop@aliyun104 group3]$ vim flume3-flume-logger.conf
添加如下内容
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = aliyun104
a3.sources.r1.port = 4141
# Describe the sink
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1执行配置文件
分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。
[hadoop@aliyun104 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console
[hadoop@aliyun102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group3/flume2-netcat-flume.conf
[hadoop@aliyun103 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group3/flume1-logger-flume.conf
在aliyun103上向/opt/module目录下的group.log追加内容
[hadoop@aliyun103 module]$ echo 'hello' > group.log
在aliyun102上向44444端口发送数据
[hadoop@aliyun102 flume]$ telnet aliyun102 44444
检查aliyun104上数据