目录
- jdbc 参数解读
- 源码
- jdbc 读并发度优化
- jdbc 写并发度优化
jdbc 参数解读
Spark SQL还包括一个可以使用JDBC从其他数据库读取数据的数据源。与使用JdbcRDD相比,应优先使用此功能。这是因为结果作为DataFrame返回,它们可以在Spark SQL中轻松处理或与其他数据源连接。JDBC数据源也更易于使用Java或Python,因为它不需要用户提供ClassTag。
可以使用Data Sources API将远程数据库中的表加载为DataFrame或Spark SQL临时视图。用户可以在数据源选项中指定JDBC连接属性。user和password通常作为用于登录数据源的连接属性。除连接属性外,Spark还支持以下不区分大小写的选项:
属性名称 | 解释 |
---|---|
url |
要连接的JDBC URL |
dbtable |
读取或写入的JDBC表 |
query |
指定查询语句 |
driver |
用于连接到该URL的JDBC驱动类名 |
partitionColumn, lowerBound, upperBound |
如果指定了这些选项,则必须全部指定。另外, numPartitions 必须指定 |
numPartitions |
表读写中可用于并行处理的最大分区数。这也确定了并发JDBC连接的最大数量。如果要写入的分区数超过此限制,我们可以通过coalesce(numPartitions) 在写入之前进行调用将其降低到此限制 |
queryTimeout |
默认为0 ,查询超时时间 |
fetchsize |
JDBC的获取大小,它确定每次要获取多少行。这可以帮助提高JDBC驱动程序的性能 |
batchsize |
默认为1000,JDBC批处理大小,这可以帮助提高JDBC驱动程序的性能。 |
isolationLevel |
事务隔离级别,适用于当前连接。它可以是一个NONE ,READ_COMMITTED ,READ_UNCOMMITTED ,REPEATABLE_READ ,或SERIALIZABLE ,对应于由JDBC的连接对象定义,缺省值为标准事务隔离级别READ_UNCOMMITTED 。此选项仅适用于写作。 |
sessionInitStatement |
在向远程数据库打开每个数据库会话之后,在开始读取数据之前,此选项将执行自定义SQL语句,使用它来实现会话初始化代码。 |
truncate |
这是与JDBC writer相关的选项。当SaveMode.Overwrite 启用时,就会清空目标表的内容,而不是删除和重建其现有的表。默认为false |
pushDownPredicate |
用于启用或禁用谓词下推到JDBC数据源的选项。默认值为true,在这种情况下,Spark将尽可能将过滤器下推到JDBC数据源。 |
函数示例:
val jdbcDF = sparkSession.sqlContext.read.format("jdbc") |
从函数可以看出,option模式其实是一种开放接口,spark会根据具体的参数,做出相应的行为。
源码
- SparkSession
/** |
- DataFrameReader
// ...省略代码... |
jdbc 读取并发度优化
很多人在spark中使用默认提供的jdbc方法时,在数据库数据较大时经常发现任务 hang 住,其实是单线程任务过重导致,这时候需要提高读取的并发度。
单partition(无并发)
调用函数
def jdbc(url: String, table: String, properties: Properties): DataFrame
使用:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,prop)
// 一些操作
....查看并发度
jdbcDF.rdd.partitions.size # 结果返回 1
该操作的并发度为1,你所有的数据都会在一个partition中进行操作,意味着无论你给的资源有多少,只有一个task会执行任务,执行效率可想而之,并且在稍微大点的表中进行操作分分钟就会OOM。
更直观的说法是,达到千万级别的表就不要使用该操作,
count
操作就要等一万年,no zuo no die ,don’t to try !WARN TaskSetManager: Lost task 0.0 in stage 6.0 (TID 56, spark047219):
java.lang.OutOfMemoryError: GC overhead limit exceeded
at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3380)根据 id (整型)字段分区
调用函数
def jdbc(
url: String,
table: String,
columnName: String, # 根据该字段分区,需要为整形,比如id等
lowerBound: Long, # 分区的下界
upperBound: Long, # 分区的上界
numPartitions: Int, # 分区的个数
connectionProperties: Properties): DataFrame使用:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
val columnName = "colName"
val lowerBound = 1,
val upperBound = 10000000,
val numPartitions = 10,
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,columnName,lowerBound,upperBound,numPartitions,prop)
// 一些操作
....查看并发度
jdbcDF.rdd.partitions.size # 结果返回 10
该操作将字段
colName
中1-10000000条数据分到10个partition中,使用很方便,缺点也很明显,只能使用整形数据字段作为分区关键字。3000w数据的表
count
跨集群操作只要2s。根据时间字段分区
调用函数
jdbc(
url: String,
table: String,
predicates: Array[String],
connectionProperties: Properties): DataFrame下面以使用最多的时间字段分区为例:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
/**
* 将9月16-12月15三个月的数据取出,按时间分为6个partition
* 为了减少事例代码,这里的时间都是写死的
* modified_time 为时间字段
*/
val predicates =
Array(
"2015-09-16" -> "2015-09-30",
"2015-10-01" -> "2015-10-15",
"2015-10-16" -> "2015-10-31",
"2015-11-01" -> "2015-11-14",
"2015-11-15" -> "2015-11-30",
"2015-12-01" -> "2015-12-15"
).map {
case (start, end) =>
s"cast(modified_time as date) >= date '$start' " + s"AND cast(modified_time as date) <= date '$end'"
}
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,predicates,prop)
// 一些操作查看并发度
jdbcDF.rdd.partitions.size # 结果返回 6
该操作的每个分区数据都由该段时间的分区组成,这种方式适合各种场景,较为推荐。
id 取模方式分区
sqlContext.read.jdbc(url,tableName, "id%200", 1, 1000000,400,prop)
根据
numPartitions
确定合理的模值,可以尽量做到数据的连续,且写法简单,但是由于在ID字段上使用了函数计算,所以索引将失效,此时需要配合其他包含索引的where条件加以辅助,才能使查询性能最大化。自定义处理方式
def getPredicates = {
//1.获取表total数据。
//2.按numPartitions均分,获得offset,可以确保每个分片的数据一致
//3.获取每个分片内的最大最小ID,组装成条件数组
。。。实现细节省略
}
sqlContext.read.jdbc(url,table, getPredicates,connectionProperties)通过自由组装方式,可以达到精确控制,但是实现成本较高。
数据读取分区的原理
无论使用哪种JDBC API,spark拉取数据最终都是以select语句
来执行的,所以在自定义分区条件或者指定的long型column时,都需要结合表的索引来综合考虑,才能以更高性能并发读取数据库数据。
API中的columnName
其实只会作为where条件进行简单的拼接,所以数据库中支持的语法,都可以使用。tableName
的原理也一样,仅会作为from 后的内容进行拼接,所以也可以写一个子句传入tableName
中,但依然要在保证性能的前提下。
不仅仅是取模操作
,数据库语法支持的任何函数,都可以在API中传入使用,关键在于性能是否达到预期。
JDBC的读取性能受很多条件影响,需要根据不同的数据库,表,索引,数据量,spark集群的executor情况等综合考虑,线上环境的操作,建议进行读写分离,即读备库,写主库。
注意:
高并发度可以大幅度提高读取以及处理数据的速度,但是如果设置过高(大量的partition同时读取)也可能会将数据源数据库弄挂。
jdbc 写并发度优化
jdbc 方式
object BatchInsertMySQL {
case class Person(name: String, age: Int)
def main(args: Array[String]): Unit = {
// 创建sparkSession对象
val conf = new SparkConf()
.setAppName("BatchInsertMySQL")
val spark: SparkSession = SparkSession.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
// MySQL连接参数
val url = JDBCUtils.url
val user = JDBCUtils.user
val pwd = JDBCUtils.password
// 创建Properties对象,设置连接mysql的用户名和密码
val properties: Properties = new Properties()
properties.setProperty("user", user) // 用户名
properties.setProperty("password", pwd) // 密码
properties.setProperty("driver", "com.mysql.jdbc.Driver")
properties.setProperty("numPartitions","10")
// 读取mysql中的表数据
val testDF: DataFrame = spark.read.jdbc(url, "test", properties)
println("testDF的分区数: " + testDF.rdd.partitions.size)
testDF.createOrReplaceTempView("test")
testDF.sqlContext.cacheTable("test")
testDF.printSchema()
val result =
s"""-- SQL代码
""".stripMargin
val resultBatch = spark.sql(result).as[Person]
println("resultBatch的分区数: " + resultBatch.rdd.partitions.size)
// 批量写入MySQL
// 此处最好对处理的结果进行一次重分区
// 由于数据量特别大,会造成每个分区数据特别多
resultBatch.repartition(400).foreachPartition(record => {
val list = new ListBuffer[Person]
record.foreach(person => {
val name = Person.name
val age = Person.age
list.append(Person(name,age))
})
upsertDateMatch(list) //执行批量插入数据
})
// 批量插入MySQL的方法
def upsertPerson(list: ListBuffer[Person]): Unit = {
var connect: Connection = null
var pstmt: PreparedStatement = null
try {
connect = JDBCUtils.getConnection()
// 禁用自动提交
connect.setAutoCommit(false)
val sql = "REPLACE INTO `person`(name, age)" +
" VALUES(?, ?)"
pstmt = connect.prepareStatement(sql)
var batchIndex = 0
for (person <- list) {
pstmt.setString(1, person.name)
pstmt.setString(2, person.age)
// 加入批次
pstmt.addBatch()
batchIndex +=1
// 控制提交的数量,
// MySQL的批量写入尽量限制提交批次的数据量,否则会把MySQL写挂!!!
if(batchIndex % 1000 == 0 && batchIndex !=0){
pstmt.executeBatch()
pstmt.clearBatch()
}
}
// 提交批次
pstmt.executeBatch()
connect.commit()
} catch {
case e: Exception =>
e.printStackTrace()
} finally {
JDBCUtils.closeConnection(connect, pstmt)
}
}
spark.close()
}
}df 方式
sqlDF.coalesce(10) // 并行度
.write
.mode(SaveMode.Overwrite) //覆盖模式
.format("jdbc")
.option("url", url)
.option("dbtable", s"$db.$target")
.option("user", user)
.option("password", password)
.option("driver",driver)
.option("batchsize","2000") // 每个批次写入的数据量
.option("truncate",true) // SaveMode.Overwrite 不删除而是清空表
.save()