目录
- 表引擎的作用是什么
- 表引擎分类
- Log系列表引擎
本文将介绍ClickHouse中一个非常重要的概念—表引擎(table engine)。如果对MySQL熟悉的话,或许你应该听说过InnoDB和MyISAM存储引擎。不同的存储引擎提供不同的存储机制、索引方式、锁定水平等功能,也可以称之为表类型。ClickHouse提供了丰富的表引擎,这些不同的表引擎也代表着不同的表类型。比如数据表拥有何种特性、数据以何种形式被存储以及如何被加载。
表引擎的作用是什么
- 决定表存储在哪里以及以何种方式存储
- 支持哪些查询以及如何支持
- 并发数据访问
- 索引的使用
- 是否可以执行多线程请求
- 数据复制参数
表引擎分类
引擎分类 |
引擎名称 |
MergeTree系列 |
MergeTree 、ReplacingMergeTree 、SummingMergeTree 、 AggregatingMergeTree CollapsingMergeTree 、 VersionedCollapsingMergeTree 、GraphiteMergeTree |
Log系列 |
TinyLog 、StripeLog 、Log |
Integration Engines |
Kafka 、MySQL、ODBC 、JDBC、HDFS |
Special Engines |
Distributed 、MaterializedView、 Dictionary 、Merge 、File、Null 、Set 、Join 、 URL View、Memory 、 Buffer |
Log系列表引擎
应用场景
Log系列表引擎功能相对简单,主要用于快速写入小表(1百万行左右的表),然后全部读出的场景。即一次写入多次查询。
Log系列表引擎的特点
共性特点
- 数据存储在磁盘上
- 当写数据时,将数据追加到文件的末尾
- 不支持并发读写,当向表中写入数据时,针对这张表的查询会被阻塞,直至写入动作结束
- 不支持索引
- 不支持原子写:如果某些操作(异常的服务器关闭)中断了写操作,则可能会获得带有损坏数据的表
- 不支持ALTER操作(这些操作会修改表设置或数据,比如delete、update等等)
区别
TinyLog
TinyLog是Log系列引擎中功能简单、性能较低的引擎。它的存储结构由数据文件和元数据两部分组成。其中,数据文件是按列独立存储的,也就是说每一个列字段都对应一个文件。除此之外,TinyLog不支持并发数据读取。
StripLog支持并发读取数据文件,当读取数据时,ClickHouse会使用多线程进行读取,每个线程处理一个单独的数据块。另外,StripLog将所有列数据存储在同一个文件中,减少了文件的使用数量。
Log支持并发读取数据文件,当读取数据时,ClickHouse会使用多线程进行读取,每个线程处理一个单独的数据块。Log引擎会将每个列数据单独存储在一个独立文件中。
TinyLog表引擎使用
该引擎适用于一次写入,多次读取的场景。对于处理小批数据的中间表可以使用该引擎。值得注意的是,使用大量的小表存储数据,性能会很低。
CREATE TABLE emp_tinylog ( emp_id UInt16 COMMENT '员工id', name String COMMENT '员工姓名', work_place String COMMENT '工作地点', age UInt8 COMMENT '员工年龄', depart String COMMENT '部门', salary Decimal32(2) COMMENT '工资' )ENGINE=TinyLog();
INSERT INTO emp_tinylog VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000); INSERT INTO emp_tinylog VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
|
进入默认数据存储目录,查看底层数据存储形式,可以看出:TinyLog引擎表每一列都对应的文件
[root@cdh04 emp_tinylog]# pwd /var/lib/clickhouse/data/default/emp_tinylog [root@cdh04 emp_tinylog]# ll 总用量 28 -rw-r----- 1 clickhouse clickhouse 56 9月 17 14:33 age.bin -rw-r----- 1 clickhouse clickhouse 97 9月 17 14:33 depart.bin -rw-r----- 1 clickhouse clickhouse 60 9月 17 14:33 emp_id.bin -rw-r----- 1 clickhouse clickhouse 70 9月 17 14:33 name.bin -rw-r----- 1 clickhouse clickhouse 68 9月 17 14:33 salary.bin -rw-r----- 1 clickhouse clickhouse 185 9月 17 14:33 sizes.json -rw-r----- 1 clickhouse clickhouse 80 9月 17 14:33 work_place.bin
{ "yandex":{ "age%2Ebin":{ "size":"56" }, "depart%2Ebin":{ "size":"97" }, "emp_id%2Ebin":{ "size":"60" }, "name%2Ebin":{ "size":"70" }, "salary%2Ebin":{ "size":"68" }, "work_place%2Ebin":{ "size":"80" } } }
|
当我们执行ALTER操作时会报错,说明该表引擎不支持ALTER操作
ALTER TABLE emp_tinylog DELETE WHERE emp_id = 5; ALTER TABLE emp_tinylog UPDATE age = 30 WHERE emp_id = 4;
|
StripLog表引擎使用
相比TinyLog而言,StripeLog拥有更高的查询性能(拥有.mrk标记文件,支持并行查询),同时其使用了更少的文件描述符(所有数据使用同一个文件保存)。
CREATE TABLE emp_stripelog ( emp_id UInt16 COMMENT '员工id', name String COMMENT '员工姓名', work_place String COMMENT '工作地点', age UInt8 COMMENT '员工年龄', depart String COMMENT '部门', salary Decimal32(2) COMMENT '工资' )ENGINE=StripeLog;
INSERT INTO emp_stripelog VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000); INSERT INTO emp_stripelog VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
cdh04 :) select * from emp_stripelog;
SELECT * FROM emp_stripelog
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐ │ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │ │ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │ └────────┴──────┴────────────┴─────┴────────┴──────────┘ ┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐ │ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │ │ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │ └────────┴──────┴────────────┴─────┴──────────┴──────────┘
|
进入默认数据存储目录,查看底层数据存储形式
[root@cdh04 emp_stripelog]# pwd /var/lib/clickhouse/data/default/emp_stripelog [root@cdh04 emp_stripelog]# ll 总用量 12 -rw-r----- 1 clickhouse clickhouse 673 9月 17 15:11 data.bin -rw-r----- 1 clickhouse clickhouse 281 9月 17 15:11 index.mrk -rw-r----- 1 clickhouse clickhouse 69 9月 17 15:11 sizes.json
|
可以看出StripeLog表引擎对应的存储结构包括三个文件:
- data.bin:数据文件,所有的列字段使用同一个文件保存,它们的数据都会被写入data.bin。
- index.mrk:数据标记,保存了数据在data.bin文件中的位置信息(每个插入数据块对应列的offset),利用数据标记能够使用多个线程,以并行的方式读取data.bin内的压缩数据块,从而提升数据查询的性能。
- sizes.json:元数据文件,记录了data.bin和index.mrk大小的信息
提示:
StripeLog
引擎将所有数据都存储在了一个文件中,对于每次的INSERT操作,ClickHouse会将数据块追加到表文件的末尾
StripeLog引擎同样不支持ALTER UPDATE
和ALTER DELETE
操作
Log表引擎使用
Log引擎表适用于临时数据,一次性写入、测试场景。Log引擎结合了TinyLog表引擎和StripeLog表引擎的长处,是Log系列引擎中性能最高的表引擎。
CREATE TABLE emp_log ( emp_id UInt16 COMMENT '员工id', name String COMMENT '员工姓名', work_place String COMMENT '工作地点', age UInt8 COMMENT '员工年龄', depart String COMMENT '部门', salary Decimal32(2) COMMENT '工资' )ENGINE=Log; INSERT INTO emp_log VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000); INSERT INTO emp_log VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
cdh04 :) select * from emp_log;
SELECT * FROM emp_log
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐ │ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │ │ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │ └────────┴──────┴────────────┴─────┴────────┴──────────┘ ┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐ │ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │ │ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │ └────────┴──────┴────────────┴─────┴──────────┴──────────┘
|
进入默认数据存储目录,查看底层数据存储形式
[root@cdh04 emp_log]# pwd /var/lib/clickhouse/data/default/emp_log [root@cdh04 emp_log]# ll 总用量 32 -rw-r----- 1 clickhouse clickhouse 56 9月 17 15:55 age.bin -rw-r----- 1 clickhouse clickhouse 97 9月 17 15:55 depart.bin -rw-r----- 1 clickhouse clickhouse 60 9月 17 15:55 emp_id.bin -rw-r----- 1 clickhouse clickhouse 192 9月 17 15:55 __marks.mrk -rw-r----- 1 clickhouse clickhouse 70 9月 17 15:55 name.bin -rw-r----- 1 clickhouse clickhouse 68 9月 17 15:55 salary.bin -rw-r----- 1 clickhouse clickhouse 216 9月 17 15:55 sizes.json -rw-r----- 1 clickhouse clickhouse 80 9月 17 15:55 work_place.bin
|
Log引擎的存储结构包含三部分:
- 列.bin:数据文件,数据文件按列单独存储
- __marks.mrk:数据标记,统一保存了数据在各个.bin文件中的位置信息。利用数据标记能够使用多个线程,以并行的方式读取。.bin内的压缩数据块,从而提升数据查询的性能。
- sizes.json:记录了.bin和__marks.mrk大小的信息
提示:
Log表引擎会将每一列都存在一个文件中,对于每一次的INSERT操作,都会对应一个数据块