窗口聚合函数
聚合函数是将多行数据按照规则聚合为一行,比如count()、sum()、min()、max()、avg()
窗口排序函数
窗口排序函数提供了数据的排序信息,比如行号和排名。在一个分组的内部将行号或者排名作为数据的一部分进行返回,最常用的排序函数主要包括:
row_number:根据具体的分组和排序,为每行数据生成一个起始值等于1的唯一序列数
rank:对组中的数据进行排名,如果名次相同,则排名也相同,但是下一个名次的排名序号会出现不连续。比如查找具体条件的topN行
dense_rank:dense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。当出现名次相同时,则排名序号也相同。而下一个排名的序号与上一个排名序号是连续的。
percent_rank:排名计算公式为:(current rank - 1)/(total number of rows - 1)
ntile:将一个有序的数据集划分为多个桶(bucket),并为每行分配一个适当的桶数。它可用于将数据划分为相等的小切片,为每一行分配该小切片的数字序号。
窗口分析函数
常用的分析函数主要包括:
cume_dist:如果按升序排列,则统计:小于等于当前值的行数/总行数(number of rows ≤ current row)/(total number of rows)。如果是降序排列,则统计:大于等于当前值的行数/总行数。比如,统计小于等于当前工资的人数占总人数的比例 ,用于累计统计。
lead(value_expr[,offset[,default]]):用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL
lag(value_expr[,offset[,default]]):与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
first_value:取分组内排序后,截止到当前行,第一个值
last_value:取分组内排序后,截止到当前行,最后一个值
自定义窗口大小
- RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
为默认值,即当指定了ORDER BY从句,而省略了window从句 ,表示从开始到当前行。
- RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
表示从当前行到最后一行
- RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
表示所有行
- n PRECEDING m FOLLOWING
表示窗口的范围是:[(当前行的行数)- n, (当前行的行数)+m]